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Geometry of Three Convex 
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An expression for the configuration integral for three overlapping convex 
bodies, which is a generalization of Hadwigcr-Isihara 's  formula for two 
convex bodies, has been found. As an application of this expression, two- 
and three-molecule cluster integrals (or second and third virial coefficients) 
for polyatomic molecules in gases are discussed on the basis of a square- 
well potential  with convex cores. 

KEY W O R D S  : Statistical thermodynamics of gases; intermolecular forces; 
nonspherical molecules. 

1.  I N T R O D U C T I O N  

T h e  e q u a t i o n  o f  s t a t e  o f  gases  m a y  b e  e x p r e s s e d  in  t he  f o r m  

P / k T  = n + B ( T ) n  2 + C ( T ) n  3 + ... (1) 

H e r e  P is t h e  p r e s s u r e ;  n is t h e  n u m b e r  d e n s i t y  o f  m o l e c u l e s ;  k is t he  Bo l t z -  

m a n n  c o n s t a n t ;  a n d  T is t h e  a b s o l u t e  t e m p e r a t u r e .  I n  t h i s  e x p r e s s i o n  B ( T ) ,  

C ( T )  ..... a r e  ca l l ed  t h e  s e c o n d ,  t h i r d  ..... v i r ia l  coeff ic ients .  
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The equation of state can also be expressed in the form of power series 

e/ r = = (2) 
/=1 /=1 

in which the fugacity z plays the role of  a parameter. Here bl = 1, and b2(T), 
ba(T),..., are called the two-molecule, three-molecule,..., cluster integrals, 
The following relationships hold between the virial coefficients and the 
cluster integrals: 

b2 = - B ,  b3 = 2B 2 - �89 ... (3) 

The/-molecule cluster integral bt(T) has 1 - 1 zeros (I = 2, 3,...), each 
of which is located between two neighboring zeros of b~ § I(T). The least zero 
of b,(T) decreases as l increases, and the accumulation point of these least 
zeros coincides with the critical temperature5 ~ For  this reason we use 
b~(T), instead of C(T), for comparison of theory with experiment. 

The second virial coefficient is positive for T > TB and negative for 
T < TB, TB being the so-called Boyle temperature. It is convenient to define 
the volume b by 

dB dB 

and consider the dimensionless quantities b~/b z- 1 as functions of T/TB. 
Figure 1 shows typical examples of the two- and three-molecule cluster 

integrals, which are obtained by the use of  observed virial coefficients (2) 
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-0-5 

Ar + X 
N2 A v 
CF4 o �9 

T/TD 

0-5 ~ b2/b 2.'0 

b~,/b~ ~ 

Fig. 1. Exper imenta l  va lues  o f  b2/b a n d  bs/b 2 as func t ions  o f  T/TB. TB = 408 K,  b = 
67.5/~3 for  a rgon ;  Ts  = 323 K,  b = 52.1/~a for  n i t rogen ;  TB = 517 K,  b = 174/~a for  
c a r b o n  te t raf luor ide.  
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and the relations (3). The law of corresponding states does hold well for b2, 
but not for ba. This fact indicates that the intermolecular potential functions 
for Ar, N2, and CF4 are not similar, and that the three-molecule cluster 
integral is sensitive to the characteristics of the intermolecular forces. 

The second virial coefficient B(T) is given by 

2B(T) = ( f  [ 1 - e x p ( - U 1 2 / k T ) ] d ' r 2 )  (5) 

Here U12 is the intermolecular potential for the pair (1, 2); dr2 is the volume 
element occupied by the arbitrarily chosen "center" of the molecule 2, 
and ( ) indicates the average with respect to the orientation of molecule 2, 
molecule 1 being kept fixed. 

The third virial coefficient C(T) is given, under the assumption of po- 
tential additivity, by the expression 

3C(T) = ( 1 - e x p  kT  ] 1 - e x p  kT  ] 

l - ' x ,  
• ~ l - e x p  k T  ,l (6) / 

with the same notation. 
The purpose of the present paper is to perform the integration for C(T) 

analytically on the basis of a particular model of the nonspherical inter- 
molecular potential. 

2. MOLECULES WITH CONVEX CORES 

For nonpolar polyatomic molecules, Kihara(3) proposed an intermolec- 
ular potential function 

U(p) = Uo[(po/t,) 1~ - 2(p0/D 6] (7) 

which is similar to that of Lennard-Jones but with the variable p set equal to 
the minimum distance between impenetrable molecular cores. The core may 
take any shape as long as it is a convex body. By properly choosing the cores, 
the sizes and shapes of the molecules can be taken into account in a realistic 
way. 

A merit of the core potential (7) is that the second virial coefficient B(T) 
can be integrated analytically. 

For the purpose of discussing both B(T) and C(T), it is appropriate to 
use a simpler model of the intermolecular potential: We assume, instead of 
(7), the square-weU potential function 

0 for p < 
U(p)= ~ < 0  f o r ~ <  p < 2~ (8) 

for 2a < p 
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Here p is the distance between the convex cores; ~ and e are potential param- 
eters. A parallel body of the core with thickness ~/2, which will be denoted 
by core + , / 2  in the following, represents the impenetrable part of a molecule. 
(A body formed by all points whose distances from the surface of a convex 
body A are smaller than or equal to p is called " the  parallel body of A with 
thickness p"  and is denoted by A + p.) 

A convex body is characterized by its three fundamental measures: the 
volume V, the surface area S, and the measure M, which is the mean curvature 
integrated over the surface of the convex body (e.g., M = 4zra for a sphere of 
radius a; M = ~rL for a thin rod of length L). For any convex body, the 
inequality S <~ M2/4rr holds. 

The fundamental measures of the parallel body core + p are given by 
Steiner's formulas: 

Mcore+ p = M + 4~p 

Score + o = S .+ 2Mp + 4~'p 2 

Voore+p = V + Sp + Mp 2 + (4rr/3)p 3 

in which, and throughout the present paper, M, S, and V indicate the funda- 
mental measures of  the core. 

The second virial coefficient B(T)  for the potential (8) is a linear function 
of 

x = e  " / k r -  1 (9) 

which can be expressed in the form 

2B(T) = j~o~ _ xjr (t0) 

Here j<0, and j(1, indicate ( f  dr2) in (5) integrated over the regions p12 < a 
and a < P12 < 2a, respectively, p12 being the intercore distance. 

The integrals J"~ can be evaluated on the basis of the Hadwiger-Isihara 
formula r for systems of two convex bodies A and B. Keeping the body A 
fixed, and keeping the orientation of  the body B also fixed, let us move B 
around A, keeping contact on the surface of A. Then, the locus of the 
"cen te r"  of B forms the surface of another convex body, named A + B. 
Its volume VA+B averaged over the orientation of B is given by 

(Va+B) = Va + VB + (4rr)-I(SAMB + SnMa) (11) 

where VA, SA, and Ma denote the fundamental measures of the body A. By 
virtue of this formula, j(o> and J(a) are given by 

j<o) = (Vcor.+~+core), j(l> = (Vcore+2a+oore) - j(0) 

in which 

(Vcor~+,+oore) = (4Tr/3) es + 2M (r2 + 2[S + (4rr)-~M~](r 

+ 2IV + (4zr)-~MS] 
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Here Steiner's formulas  have been used. Finally, 

B(T) = (27r/3)ea(1 - 7x) + Me2(1 - 3x) 

+ IS + (4rr)-lM2]o(1 - x) + V + (4rr)-IMS (12) 

The third virial coefficient C(T) for our  present model is a cubic function 
o f  x, 

3C(T) = I (~ - 3xI m + 3x2I c2) - xaI (a) (13) 

Here I <') indicate ( J j  dr2 dr3)  in (6) integrated over the following regions: 

/(o): P12 < G, Pza < ~, P2a < ~r 

I r a :  cr < Pz2 < 2or, Pza < G, P2a < o- 

i (2): o, < pz2 < 2(r, (r < Pza < 2 e ,  P2a < (r 

I (a): cr < /)12 < 2(r, (r < Pla < 2(r, (r < P2a < 2~ 

p~ being the intercore distance for  the pair (i, k). 
In  order to evaluate the integrals I <~ we define a function F(A, B, C) 

of  three convex bodies A, B, and C. Keeping the body A fixed, and keeping 
the orientations o f  the bodies B and C also fixed, we let B and C move around 
over the configurations in which all the pairs AB, AC, and BC overlap. Then 
the arbitrarily chosen " c e n t e r "  o f  B and the center o f  C generate together 
a six-dimensional domain.  The six-dimensional volume of  this domain 
averaged over the orientations o f  B and C is denoted by F(A, B, C). In  terms 
of  this function, the I ~~ are given by 

I <~ = F(core + or/2, core + a/2, core + a/2) 

I <1) = F(core + or, core + or, core) - I <~ 

1 <2) = F(core + 3~r/2, core + o/2, core + a/2) - I c~ - 21 <1) 

I <8) = F(core + a, core + a, core + a) - I r176 - 31 <1) - 31 <2) 

3. T H E  C O N F I G U R A T I O N  I N T E G R A L  FOR T H R E E  
O V E R L A P P I N G  C O N V E X  BODIES 

The function F(A, B, C) is a generalization o f  (Va+~) to a system of  
three convex bodies. 
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In a particular case where one of the convex bodies, say A, is much 
larger than the other two, F(A, B, C) should reduce to VA(VB+c) or, by 
making use of  (11), 

Va[VB + Vo + (4rr)-I(SBMc + ScMB)] 

Taking this asymptotic form into account, we let 

F(A, B, C)= r'~V'~ + GVc + V~Vc 

+ (4rr)-I[VA(SBMe + SeMB) + VB(SaMc + SOMA) 

+ Vo(S.,MB + SBMa) + G(A, B, C)] (14) 

In another particular case where the three convex bodies are spheres 
of radii a, b, and c, F(A, B, C) is calculated to be 

F(A, B, C) = (4rr)Z[3-2(a3b 3 + a3c 3 + b3c 3) 

+ 3-labc(a2b + ab 2 + a2c + ac 2 + b2c + bc 2) + a2b2c 2] 

o r  

G(A, B, C) = (4rOaa2bg"c 2 

Among monomials of the fundamental measures which become (4rr)3aZb2c 2 
for spheres, the smallest is SASBSc and the largest is (4rr)-3Ma2MB2Mc 2. 
Hence it is expected that 

SASBSc < G(A, B, C) < (4rr)-aMa2MB2Mc z (15) 

Expression (14) with (15) is a generalization of the Hadwiger-Isihara formula. 
Although we are not able to give a mathematical proof of relation (15), we 
have ascertained that it is correct. Some examples follow. 

In case the body C is much smaller than A and B, which means Sc << 
min(SA, SB) and Mo << min(MA, MB), F(A, B, C) is equal to (VA+B)(VB+c) 
up to the terms in 

VAVB + (4~r)-~(YASB + FBSA)Mc 

+ (4rr)-I[(VAMB + VBMA)Sc + (4zr)-~SASBMc 2] 

Namely, G(A, B, C) = (4zr)-ISASBMc 2 satisfies the inequality (15). 
Figure 2 shows the result of a computer calculation by the Monte 

Carlo method for a system of three identical "spherocylinders," which are 
parallel bodies of a rod or a disk type. 
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Fig. 2. The ratios F +/F and F-[F for three identical spherocylinders. Here F + indicates 
the upper bound of F in which G(A, B, C) is replaced by (4~)-3MAaMB2Mc2; F- rep- 
resents the lower bound in which G(A, B, C) is replaced by S.4S8Sc. 

In  application to molecules, the arithmetic mean of  the upper  and lower 
bounds  can be used as an approximat ion to G(A, B, C). 

4. C O M P A R I S O N  OF T H E O R Y  W I T H  E X P E R I M E N T  

As an example we consider CF4 molecule, choosing a regular te t rahedron 
defined by the four  fluorine a toms as its core. Fo r  a regular te t rahedron in- 
scribed in a unit  sphere, the three fundamental  measures are 

V = 8 v ~ / 2 7  = 0.51320, S = 8~r = 4.61880 

M = 2%/-6 c o s - l (  - 1/3) = 9.36015 

By making  use o f  1.36 A for  the C F  bond  length, we have V = 1.29 A 3, 
S = 8,54 A 2, and M = 12.73 A for the core o f  carbon tetrafluoride. F r o m  
experimental results for  the second virial coefficient and expression (12) we 
obtain 

= 2 . 2 8 A  and E/k = 1 5 7 K  

In  Fig. 3, the calculated two- and three-molecule cluster integrals are 
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Fig. 3. Calculated cluster integrals for the square-well potential with convex molecular 
cores. The core is a regular te t rahedron for CF4 and a point for Ar. 

compared with experimental values. For comparison, corresponding curves 
in the case of  a point core are included. 

Figure 3 also shows that the least zero of ha(T) divided by TB increases 
as the relative size of  the core increases. Since the critical temperature Tc is 
the limit of  such least zeros of bz(T) for I ~ oo, the ratio Tc/TB is expected to 
increase as the relative size of  the core increases. This is in accord with ex- 
perimental results, which are shown in Fig. 4. 
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Fig. 4. The ratio Tc/TB of the critical to the Boyle 
temperatures, and the ratio Ta/TB of the least zero 
of ha(T)to the Boyle temperature. Here " n u m b e r  
of a toms"  indicates the number  of atoms, excluding 
hydrogens, in a molecule. 
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5. C O N C L U D I N G  R E M A R K S  

For  any convex-core potential of  the form (8), there exists a spherical- 

core potential 

U ( p ) =  e < 0  fo r~ '  < p < 2 ~ '  

for 2e' < p 

which gives the same second virial coefficient as B(T) given by (12). Here 
p is the distance between the new spherical cores, a '  is a new parameter, and 

is the same as before. 
The third virial coefficient calculated for this spherical-core potential 

is expected, and in fact confirmed, to be a good approximation to C(T) 
given by (13). (For a very small core, or M2/4~rcr 2 << 1, this approximation 
is exact; in this case, the radius of  the new spherical core is M/4,r, and a'  = 
a.) 

Discussions about two- and three-molecule cluster integrals on the basis 
of  a more realistic intermolecular potential (7) become possible by virtue 
of  this kind of approximation. Details will be given elsewhere. 
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